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Abstract 
Bipolar depression with comorbid obsessive-compulsive disorder (OCD) pre-
sents a significant clinical challenge due to its complex symptomatology, un-
predictable treatment responses, and high relapse rates. Traditional approaches 
to treatment planning lack reliable tools for predicting patient-specific outcomes, 
leaving clinicians with limited options for personalizing care. This study lever-
ages advanced machine learning (ML), specifically XGBoost, to develop a pre-
dictive framework capable of classifying treatment responses while identify-
ing key predictors such as age, clinical scores (HDRS, YBOCS), and treatment 
characteristics (quetiapine dose). By incorporating interpretability techniques 
such as SHAP (SHapley Additive exPlanations), the model provides transpar-
ent insights into how individual features influence predictions, making the out-
puts actionable for clinical decision-making. Furthermore, probabilistic pre-
dictions are evaluated and calibrated using isotonic regression to ensure relia-
bility, particularly for high-stakes applications in psychiatry. Through detailed 
visual analyses, including confusion matrices, ROC-AUC curves, SHAP plots, 
and calibration curves, this research bridges the gap between data-driven meth-
odologies and clinical practice, offering a robust framework for advancing 
personalized treatment strategies in bipolar depression with OCD comorbid-
ity. 
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Additive exPlanations) 

 

1. Introduction 

Bipolar depression, when coupled with obsessive-compulsive disorder (OCD), cre-
ates a unique and challenging clinical scenario characterized by increased symp-
tom severity, greater treatment resistance, and heightened relapse rates [1]. The 
coexistence of these two psychiatric conditions often leads to overlapping symp-
tomatology that complicates diagnosis and treatment [2]. For instance, depressive 
episodes in bipolar disorder may exacerbate obsessive-compulsive tendencies, while 
OCD symptoms, such as compulsive behaviors and intrusive thoughts, may inter-
fere with mood stabilization efforts [3] [4]. As a result, these patients are at a higher 
risk of poor clinical outcomes, including suboptimal treatment responses and re-
duced quality of life. Despite the availability of pharmacological and psychother-
apeutic interventions, including mood stabilizers, atypical antipsychotics, and se-
lective serotonin reuptake inhibitors (SSRIs), the variability in treatment outcomes 
across individuals remains a critical challenge for clinicians [5] [6]. The lack of 
predictive tools in psychiatry further complicates treatment planning for this vul-
nerable population. Clinicians often rely on trial-and-error approaches, which are 
time-consuming and may expose patients to unnecessary side effects or delays in 
achieving therapeutic benefits [7] [8]. Additionally, while certain medications, such 
as quetiapine, have shown promise in managing bipolar depression with OCD, there 
is no standardized method to predict which patients will respond positively to a par-
ticular intervention [9]. This creates a critical gap in the ability to deliver person-
alized care, where treatments are tailored to the specific needs and characteristics of 
individual patients. In recent years, advancements in machine learning (ML) have 
revolutionized various fields, including healthcare, by enabling data-driven predic-
tions and uncovering patterns in complex datasets [10]. ML techniques, such as 
XGBoost, offer the potential to analyze multidimensional clinical data and predict 
treatment outcomes with greater accuracy than traditional statistical models [11]. 
Moreover, explainability tools like SHAP (SHapley Additive exPlanations) provide 
transparency by highlighting the influence of individual features on model predic-
tions, thereby enhancing clinician trust and facilitating actionable insights [12]. 
When combined with calibration techniques, ML models can further improve the 
reliability of probabilistic predictions, ensuring that predictions align with observed 
clinical outcomes [13]. 

This study aims to harness the power of ML to address the unmet need for pre-
dictive tools in managing bipolar depression with OCD comorbidity. Specifically, 
it seeks to develop a robust and interpretable predictive framework that can clas-
sify treatment responses, identify key predictors, and provide reliable probability 
estimates. By focusing on both accuracy and interpretability, this research bridges 
the gap between ML-driven methodologies and real-world clinical applications, 
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offering a pathway to personalized psychiatric care. 

2. Research Objectives 

This research is guided by the following objectives: 
1) Predicting Treatment Responses: To leverage ML models, particularly XGBoost, 

for accurately classifying treatment responses into well-defined categories, such 
as “Very Much Improved”, “Much Improved”, “Minimally Improved”, and “No 
Change” [14]. 

2) Identifying Influential Predictors: To determine the most critical factors in-
fluencing treatment outcomes, such as demographic variables (age, sex), clinical 
scores (HDRS, YBOCS, YMRS), and treatment characteristics [15] [16] (e.g. quet-
iapine dose). 

3) Evaluating Model Reliability: To assess the reliability of the ML model’s pre-
dictions through calibration techniques, ensuring that probabilistic outputs are clin-
ically meaningful and aligned with real-world observations [17] [18]. 

4) Providing Actionable Insights: To use interpretability tools like SHAP to trans-
late complex ML outputs into comprehensible insights, empowering clinicians to 
make informed treatment decisions and tailor interventions to individual patient 
profiles [19]. 

By achieving these objectives, this study aims to advance the field of psychiatry 
by integrating ML-based predictions with clinical decision-making, ultimately im-
proving treatment outcomes and quality of life for patients with bipolar depression 
and OCD comorbidity. 

3. Literature Review 
3.1. Bipolar Depression with OCD Comorbidity 

Bipolar depression and obsessive-compulsive disorder (OCD) are both severe psy-
chiatric conditions, and their comorbidity presents unique challenges for diagno-
sis and treatment [20] [21]. Research indicates that up to 20% of individuals with 
bipolar disorder may also meet the criteria for OCD, leading to heightened symp-
tom complexity and increased clinical burden [22] [23]. This comorbidity is asso-
ciated with overlapping symptoms, such as intrusive thoughts and mood dysreg-
ulation, which can exacerbate depressive episodes and complicate treatment plan-
ning [24]. Moreover, comorbid OCD in bipolar patients is linked to higher rates of 
treatment resistance, reduced quality of life, and a greater risk of relapse compared 
to patients with bipolar disorder alone [25]. 

Pharmacological treatments, including atypical antipsychotics like quetiapine 
and mood stabilizers such as lithium and valproate, have demonstrated varying 
degrees of efficacy in managing this dual diagnosis [26]. However, while quetiap-
ine shows promise in alleviating depressive and OCD symptoms, clinicians often 
lack a reliable framework for predicting individual patient responses [27]. Current 
treatment strategies rely heavily on trial-and-error approaches, which are both time-
consuming and potentially harmful due to the risk of adverse effects, such as 
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treatment-induced manic episodes [28]. This underscores the urgent need for pre-
dictive tools that can guide clinicians in selecting the most effective treatment strat-
egies for this high-risk population. 

3.2. Machine Learning in Psychiatry 

Machine learning (ML) has emerged as a transformative technology in psychiatry, 
with applications ranging from diagnostic classification to predicting treatment 
outcomes in conditions like depression, schizophrenia, and anxiety disorders [29]. 
ML algorithms, such as decision trees, random forests, and gradient boosting mod-
els like XGBoost, are particularly suited for analyzing complex, multidimensional 
datasets [30]. These techniques enable the identification of patterns and relation-
ships within clinical data that might be overlooked by traditional statistical meth-
ods. 

In the context of psychiatric comorbidities, ML offers the potential to uncover 
insights into how combinations of features—such as demographic factors, symp-
tom severity scores, and medication dosages—affect treatment outcomes [31]. How-
ever, despite the growing body of research on ML applications in mental health, there 
is a noticeable gap in its use for bipolar depression with OCD comorbidity [32]. Most 
studies focus on single disorders, and limited work has addressed the interpreta-
bility and clinical utility of ML models in predicting treatment responses for com-
plex, dual-diagnosis populations. This highlights the need for research that not only 
applies ML to this underserved area but also ensures that the models are interpret-
able and actionable for clinical decision-making [33]. 

3.3. Calibration and Interpretability 

One of the key challenges in implementing machine learning models in psychiatry 
is ensuring that predictions are both accurate and clinically actionable [34]. Inter-
pretability tools, such as SHAP (SHapley Additive exPlanations), play a vital role in 
bridging the gap between complex ML models and clinical applications [35]. SHAP 
values provide detailed insights into how specific features—such as age, baseline 
severity scores, or medication doses—influence model predictions, making the 
outputs comprehensible and trustworthy for clinicians [36]. This is particularly 
important in psychiatry, where decisions often have significant consequences for 
patient outcomes. In addition to interpretability, the reliability of probabilistic 
predictions is crucial in high-stakes domains like psychiatry. Calibration tools en-
sure that the predicted probabilities generated by ML models correspond closely 
to observed outcomes. For example, a well-calibrated model predicting a 70% like-
lihood of treatment improvement should match the actual observed improvement 
rate of 70% in similar cases [37] [38]. Calibration curves are widely used to assess 
and improve the reliability of probabilistic outputs, ensuring that models provide 
clinically meaningful predictions [39]. Without calibration, even highly accurate 
models can lead to misleading probabilities, undermining their utility in practice 
[40]. 
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Despite the availability of tools like SHAP and calibration techniques such as 
isotonic regression, limited studies have applied them to dual-diagnosis conditions 
like bipolar depression with OCD [41]. Addressing this gap is critical to develop-
ing ML models that are not only predictive but also interpretable and reliable, ulti-
mately fostering greater adoption in clinical practice [42]. 

4. Methodology 
4.1. Dataset 

This study utilized a simulated clinical dataset designed to reflect real-world char-
acteristics of patients with bipolar depression and comorbid obsessive-compulsive 
disorder (OCD) [43]. The dataset included the following features: 

1) Demographics: 
o Age: A continuous variable reflecting the age of the patient, a known factor in-

fluencing treatment outcomes in psychiatry [44]. 
o Sex: A categorical variable (male or female) to account for potential gender-based 

differences in treatment response. 
2) Clinical Scores: 

o Hamilton Depression Rating Scale (HDRS): A widely used measure of depres-
sion severity [45]. 

o Yale-Brown Obsessive-Compulsive Scale (YBOCS): A clinical metric assessing 
OCD symptom severity [46]. 

o Young Mania Rating Scale (YMRS): A scale evaluating manic symptoms, rel-
evant for bipolar disorder [47]. 

3) Treatment Variables: 
o Quetiapine Dose: A continuous variable capturing the dosage of quetiapine ad-

ministered, an atypical antipsychotic commonly used to treat bipolar depression 
and OCD symptoms [48]. 

The simulated dataset was designed to closely replicate real-world clinical con-
ditions by incorporating key demographic, clinical, and treatment-related varia-
bles observed in previous studies of bipolar depression and OCD comorbidity. For 
example, the distributions for age, clinical scores (HDRS, YBOCS), and quetiapine 
dosages were modelled based on published statistical data to ensure realistic vari-
ability. Furthermore, comorbidity-related complexities, such as overlapping symp-
tom severity, were integrated to mimic clinical heterogeneity. However, it is acknowl-
edged that simulated data cannot fully capture the noise, missing values, and incon-
sistencies inherent in real-world clinical datasets, which may impact the model’s 
generalizability. This limitation underscores the need for future validation using 
diverse, real-world datasets from multiple clinical settings. 

The target variable was the treatment response, categorized into four distinct clas-
ses based on clinical outcomes: 
• “Very Much Improved”; 
• “Much Improved”; 
• “Minimally Improved”; 
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• “No Change”. 
This multi-class target variable allowed the model to capture the spectrum of treat-

ment efficacy, ranging from significant improvement to no observable change. 

4.2. Machine Learning Framework 

To predict treatment responses and derive clinically meaningful insights, a robust 
machine learning framework was implemented, as described below: 

1) Model Selection: 
o The XGBoost (Extreme Gradient Boosting) algorithm was chosen for its ability 

to handle complex, high-dimensional datasets [49]. XGBoost is a gradient 
boosting framework that builds an ensemble of decision trees, optimizing for 
predictive performance while preventing overfitting through regularization 
[50]. 

o Its ability to handle multi-class classification problems made it a suitable choice 
for this study, given the four treatment response categories. 

2) Evaluation Metrics: To comprehensively evaluate model performance, the 
following metrics and techniques were used: 
o Confusion Matrix: Provided a detailed breakdown of model predictions versus 

actual outcomes, enabling identification of specific misclassification patterns. 
o ROC-AUC (Receiver Operating Characteristic-Area Under the Curve): Measured 

the model’s ability to discriminate between classes, with higher AUC scores 
indicating better separability. 

o SHAP (SHapley Additive exPlanations): Used to interpret the model’s predictions 
by quantifying the contribution of each feature to the outcome, ensuring trans-
parency and clinical applicability. 

o Calibration Curves: Assessed the reliability of probabilistic predictions by com-
paring predicted probabilities to observed frequencies, addressing the critical 
need for confidence in clinical predictions. 

3) Baseline Comparison: 
o A logistic regression model was implemented as the baseline for performance 

benchmarking. Logistic regression, while interpretable and widely used in clin-
ical research, is limited in handling complex, non-linear relationships [51]. 
Comparing XGBoost to logistic regression helped demonstrate the added value 
of advanced ML techniques in capturing intricate patterns within the dataset 
[52]. 

XGBoost was chosen as the primary model for its ability to handle complex, 
high-dimensional data and model non-linear feature interactions effectively, out-
performing alternatives like Random Forest and SVM in terms of computational 
efficiency and regularization. Additionally, its compatibility with SHAP values en-
sures interpretability, critical for clinical applications. Logistic regression was used 
as a baseline due to its simplicity and widespread use in psychiatry, though its limi-
tations in modelling non-linear relationships highlight the advantages of advanced 
methods like XGBoost in addressing the complexities of dual-diagnosis conditions. 
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4.3. Workflow Overview 

The methodology followed a systematic workflow to ensure robustness and relia-
bility: 

1) Data Preprocessing: 
o Data normalization and encoding of categorical variables (e.g. sex). 
o Splitting the dataset into training and testing subsets to prevent overfitting and 

evaluate generalizability. 
2) Model Training: 

o The XGBoost model was trained using the training data, with hyperparameter 
tuning to optimize performance. Parameters such as tree depth, learning rate, 
and number of estimators were fine-tuned using cross-validation. 

3) Model Evaluation: 
o The trained model was tested on unseen testing data. 
o Predictions were analyzed using confusion matrices to identify correct classi-

fications and misclassifications across the four response categories. 
o ROC-AUC scores were computed for each class to evaluate discriminatory 

power. 
o SHAP values were analyzed to interpret feature contributions, providing insights 

into which factors most strongly influenced predictions. 
4) Calibration: 

o A calibration curve was generated to evaluate the reliability of probabilistic pre-
dictions. 

o Calibration techniques such as isotonic regression was applied to adjust prob-
ability estimates, ensuring that predicted probabilities aligned with observed 
outcomes. 

5) Baseline Comparison: 
o The performance of the XGBoost model was compared to logistic regression 

using the same evaluation metrics. This comparison highlighted the advantages 
of using advanced ML techniques for complex, multi-class classification prob-
lems. 

5. Results 
5.1. Confusion Matrix 

The confusion matrix (Figure 1) visualizes classification accuracy across all response 
classes. Diagonal values represent correct predictions, while off-diagonal values show 
misclassifications. The model performed best for “Very Much Improved” (Class 
0), but there was significant confusion between “Much Improved” (Class 1) and 
“Minimally Improved” (Class 2). 

5.2. SHAP Summary Plot 

SHAP values (Figure 2) highlight the most influential features. Age, HDRS_Base-
line, and YBOCS_Baseline emerged as the top predictors. This provides interpret-
ability by showing how specific features contribute to predictions. 
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Figure 1. Confusion matrix—classification performance overview. 

 

 
Figure 2. SHAP summary plot—key features driving predictions. 

5.3. Annotated Confusion Matrix 

Figure 3 adds labels to the confusion matrix, improving clarity about class-spe-
cific errors. The highest misclassification rates occurred between Class 1 (“Much 
Improved”) and Class 2 (“Minimally Improved”). The confusion between Classes 
1 (“Much Improved”) and 2 (“Minimally Improved”) can be attributed to over-
lapping feature distributions and insufficient granularity in the dataset. For example, 
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similar baseline HDRS or YBOCS scores may not fully capture subtle distinctions 
in treatment response levels. This overlap highlights the need for additional features 
that better differentiate these classes. 
 

 
Figure 3. Annotated confusion matrix—error distribution in predictions. 
 

 
Figure 4. Multi-class ROC-AUC curve—class-specific discrimination ability. 
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5.4. Multi-Class ROC-AUC Curve 

The ROC-AUC curve (Figure 4) evaluates the model’s ability to discriminate be-
tween classes. Class 0 (“Very Much Improved”) achieved the highest AUC (0.68), 
while the other classes showed weaker separations, indicating areas for improvement. 

5.5. Feature Importance 

Feature importance (Figure 5) ranks predictors based on their influence in the 
model. Age and HDRS_Baseline are the most significant predictors, underscoring 
their relevance in determining outcomes [53] [54]. 
 

 
Figure 5. Feature importance—ranked predictors of outcomes. 

 

 
Figure 6. Precision, recall, and F1-score—model performance metrics. 
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5.6. Precision, Recall, and F1-Score 

Figure 6 compares precision, recall, and F1-scores across classes. Class 0 performed 
best, while metrics for Class 1 and Class 2 revealed challenges in model generali-
zation. 

5.7. Accuracy Comparison 

Figure 7 compares the accuracy of XGBoost with logistic regression. Interestingly, 
the baseline model slightly outperformed XGBoost, highlighting the importance of 
further model refinement. 
 

 
Figure 7. Accuracy comparison—baseline vs. XGBoost. 

 

 
Figure 8. Calibration curve—probability calibration for Class 1. 
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5.8. Calibration Curve 

Figure 8 illustrates the calibration curve for Class 1. The model underestimates 
probabilities, as evidenced by the curve deviating below the ideal line, suggesting 
the need for recalibration. 

6. Discussion 
Insights 

The findings from this study highlight several critical insights into the use of ma-
chine learning (ML) for predicting treatment responses in bipolar depression with 
OCD comorbidity [55] [56]. The use of SHAP (SHapley Additive exPlanations) 
provided interpretable and actionable insights into the model’s predictions [57]. 
Notably, features such as Age and baseline clinical scores, including the Hamilton 
Depression Rating Scale (HDRS) and the Yale-Brown Obsessive-Compulsive Scale 
(YBOCS), emerged as the most influential predictors [58]. This aligns with clinical 
evidence that age and symptom severity are key factors influencing treatment out-
comes. By quantifying the contributions of these predictors, SHAP facilitates trans-
parency, making the model’s outputs more interpretable for clinicians. Calibra-
tion curves further revealed important findings about the reliability of the model’s 
probabilistic predictions. While the XGBoost model demonstrated strong predic-
tive capabilities in terms of classification accuracy and discrimination (as evidenced 
by the ROC-AUC scores), the calibration analysis indicated a gap in probability align-
ment, particularly for Class 1 (“Much Improved”). This underlines the need for 
post-hoc calibration methods, such as isotonic regression, to ensure that predicted 
probabilities are both reliable and clinically meaningful. Without calibration, even 
highly accurate models risk misleading clinicians in high-stakes decision-making 
scenarios, emphasizing the importance of evaluating both accuracy and reliability. 
Addressing the misclassification between Classes 1 and 2 requires incorporating 
additional features that capture nuances in symptom progression and treatment 
dynamics. Temporal data, such as changes in HDRS and YBOCS scores over the 
treatment period, could provide critical insights into response trajectories. Addi-
tionally, incorporating psychosocial variables, medication adherence patterns, or 
genetic markers could enhance class separability. Future work should explore en-
semble methods or hybrid approaches to better capture complex interactions be-
tween features and improve classification accuracy. 

7. Limitations 

Despite its strengths, the study has several limitations that must be addressed: 
1) Simulated Data: 

o The use of simulated clinical data, while reflective of real-world characteristics, 
limits the generalizability of the findings. Real-world datasets often contain com-
plexities, such as missing values, noise, and variability in clinical practices, which 
may impact the model’s performance. Thus, validation using real-world clini-
cal datasets is essential to establish the model’s practical applicability. 
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2) Misclassifications in Classes 1 and 2: 
o The confusion matrices and performance metrics revealed significant misclas-

sifications between Classes 1 (“Much Improved”) and 2 (“Minimally Improved”). 
This suggests that overlapping feature distributions in these categories may have 
reduced the model’s ability to differentiate between them. Such overlaps are com-
mon in clinical datasets where subtle differences in symptom severity or response 
levels may not be adequately captured by the available features. Addressing this 
limitation requires feature engineering or the inclusion of additional clinical 
variables to improve class separability. 

3) Probabilistic Predictions: 
o While XGBoost provided strong classification performance, its probabilistic 

outputs were less reliable, particularly for intermediate classes. The calibration 
curve for Class 1 demonstrated significant deviation from the ideal calibration 
line, indicating a systematic underestimation of probabilities. This limitation 
underscores the importance of incorporating calibration techniques to improve 
the reliability of predictions for clinical use. 

8. Future Directions 

Building on the insights and limitations of this study, several key directions for fu-
ture research are proposed: 

1) Integration of Real-World Datasets: 
o To enhance the robustness and generalizability of the findings, future studies 

should incorporate real-world clinical datasets. These datasets should include 
diverse patient populations, varying treatment protocols, and longitudinal fol-
low-up data to capture the complexity of bipolar depression with OCD comor-
bidity [59]. Real-world validation will also help identify potential biases in the 
model and refine its performance in practical settings [60] [61]. 

2) Advanced Ensemble Techniques: 
o To address misclassifications and improve model performance for underrepre-

sented classes, ensemble techniques such as stacked models or hybrid approaches 
can be explored. Combining models with complementary strengths may improve 
class separability, particularly for Classes 1 and 2, where feature overlap poses 
challenges. Additionally, techniques like class rebalancing or oversampling meth-
ods (e.g. SMOTE) can address imbalances in class representation. 

3) Improved Calibration Methods: 
o Calibration of probabilistic predictions is critical for clinical reliability [62]. 

Future research should apply advanced calibration techniques, such as isotonic 
regression or Platt scaling, to ensure that the model’s probabilities align with 
observed outcomes. Furthermore, calibration methods should be evaluated on 
a class-specific basis to address variability in prediction reliability across differ-
ent response categories. 

4) Incorporating Temporal Data: 
o Future models could benefit from incorporating longitudinal or temporal data 
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to capture changes in symptom severity over time. This approach could provide 
dynamic predictions, enabling clinicians to monitor and adjust treatment plans 
more effectively. 

5) Expanding Feature Space: 
o Including additional features, such as genetic markers, comorbid medical condi-

tions, and psychosocial factors, may enhance the model’s ability to predict treat-
ment outcomes. Multimodal data integration, combining clinical, genetic, and 
imaging data, could further improve the model’s predictive accuracy. 

9. Conclusion 

This research highlights the transformative potential of machine learning (ML), 
specifically XGBoost, in predicting treatment outcomes for patients with bipolar 
depression and OCD comorbidity—a clinically complex and underserved pop-
ulation. By leveraging advanced analytical techniques, the study not only achieves 
accurate classification of treatment responses, but also provides critical insights into 
the factors driving these outcomes. The integration of interpretability tools, such as 
SHAP (SHapley Additive exPlanations), ensures that the model’s predictions are 
transparent and clinically actionable, empowering clinicians to make informed de-
cisions grounded in data. Furthermore, the application of calibration methods ad-
dresses the critical need for reliable probabilistic predictions, bridging the gap be-
tween theoretical ML models and their practical utility in real-world clinical settings. 
While the study underscores the efficacy of XGBoost in handling complex, multidi-
mensional clinical data, it also acknowledges limitations, including the use of sim-
ulated datasets and challenges in distinguishing closely related response categories. 
These findings point to opportunities for further refinement through real-world 
validation, advanced ensemble techniques, and expanded feature sets that capture 
the nuances of patient characteristics and treatment dynamics. In conclusion, this 
research establishes a robust framework for integrating ML into personalized psy-
chiatric care, paving the way for more precise, reliable, and interpretable treatment 
planning. By addressing the critical challenges of prediction accuracy, interpreta-
bility, and calibration, this study offers a significant step toward improving outcomes 
for individuals with bipolar depression and OCD comorbidity, ultimately enhanc-
ing the quality and effectiveness of mental health care. 
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